PROVA DE QUÍMICA

Química Geral e Inorgânica

A menor porção de um ele A. Substância;		rar na constituição de C. Electrão;			
Corpúsculos electricament A. Electrões;	e neutros formados j B. Substâncias;	por agregados de átor C. Molécula			
Que nome se dá a partícu uma carga eléctrica det		átomo ou grupo de á	itomos, que transportam		
A. Ião;	B. Molécula;	C. Electrão;	D. Protão.		
Uma determinada amostr amostra? Ar(I) = 127,0		63,5 g. Quantas mole	s de Iodo existem nessa		
A. 0,25 mol de moléculas;		C. 0,45 mol de moléculas;			
B. 1,5x10 ²³ moléculas;		D. 0.25×10^{23} mol de moléculas.			
Relativamente a pergunta	4, quantas moléculas	s de Iodo existem nest	a porção de substância?		
A. 6, 02×10^{23} moléculas;		C. $1,5 \times 10^{-23}$ moléculas;			
B. 1,5x10 ²³ moléculas;		D. 6,02 ⁻²³ mo	oléculas.		
Uma solução aquosa de l solução. A concentraç respectivamente:	_	· · · · · · · · · · · · · · · · · · ·	de soluto em 500 ml de ssolvido na solução são		
A. 4×10^{-1} mol/l e 58,84 g;		$C. 4x10^{-1} \text{ mol/l e } 55,84 \text{ g};$			
B. $4x10^{-3}$ mol/l e 58,84 g;		D. $3x10^{-1}$ mol/1 e 58,84 g.			
Quantas moles de molécula Sódio com água?	as de Hidrogénio se	obtêm, fazendo a reac	eção completa de 2,3 g de		
A. 0,10 mol;	B. 0,05 mol;	C. 0,25 mol;	D. 0,03 mol.		
Qual é o volume de Hidrog com quantidade suficie			reacção de 26 g de Zinco		
A. 7 L;	B. 8,96 L;	C. 10,5 L;	D. 7,23 L.		
Quantas gramas de Oxigén Potássio?	nio são obtidas pela	decomposição térmica	a de 24,5 g de Clorato de		
A. 3.2 g;	B. 9,6 g;	C. 11,2 g;	D. 3,5 g.		
Calcular a massa de 112 lit	tros de gás carbónico	nas CNTP			
A. 200 g;	B. 112 g;	C. 212 g;	D. 220 g.		

Calcular o volume ocupado por 500 g de Hidrogénio, nas CNTP.

- **A.** A. 5,600 L;
- **B.** 12,5 L;
- **C.** 5 L:
- **D.** 4,8 L.

São substâncias simples:

A. Cloro, Carbono, Nitrogénio;

C. Néon, Xénon, Sal;

B. Flúor, Ácido clorídrico, Sódio;

D. Fósforo, Ferro, Aço.

O átomo de um determinado elemento possui 25 protões, 25 electrões e 30 neutrões. Qual é, entre os valores indicados, o que corresponde ao número de massa deste átomo?

A. 25;

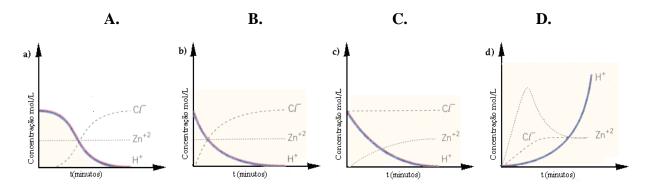
- **B.** 50;
- **C.** 55;
- **D.** 30.

Os átomos de Potássio têm 19 protões e 20 neutrões. Qual é, entre os valores indicados, o que corresponde ao número de electrões existentes neste átomo?

A. 20;

- **B.** 19:
- **C.** 39;
- **D.** 18.

Seja a decomposição de água oxigenada: $2~H_2O_2 \rightarrow 2~H_2O + O_2$. Em dois minutos, observa-se uma perda de 3,4g de água oxigenada. Qual a velocidade média dessa reacção em relação ao gás oxigénio em mol/min?


A. 0,025mol/min;

C. 0,075mol/min;

B. 0,050mol/min;

D. 1,00mol/min.

Na reacção de solução de ácido clorídrico com zinco metálico, o gráfico que melhor representa o comportamento das espécies em solução é:

A combustão do butano é representada pela equação:

$$C_4H_{10} + \frac{13}{2}O_2 \xrightarrow{\Delta} 4CO_2 + 5H_2O$$

Se houver um consumo de 4 moles de butano em cada 20 minutos de reacção, qual o número de moles de dióxido de carbono produzido em uma hora?

- **A.** 8mol/h;
- **B.** 4mol/h;
- **C.** 48mol/h;
- **D.** 16mol/h

Considere a reacção CaCO₃ → CaO + CO₂. Foi aquecida uma certa massa de carbonato de cálcio e o volume de gás carbónico obtido foi sendo observado e medido em função do tempo. Foi obtida a tabela abaixo:

Mols de CO ₂	0	20	35	45	50	52
Tempo (min)	0	10	20	30	40	50

Qual é a velocidade média dessa reacção no intervalo de 0 a 10 min?

A. 1mol/min; **B.** 2mol/min; **C.** 3mol/min; **D.** 4mol/min.

Na reacção $2H_2O_2 \rightarrow 2H_2O + O_2$, a velocidade média dessa reacção num certo intervalo de tempo, é 8 mol/s em relação a água oxigenada. Qual a velocidade em relação ao oxigénio no mesmo intervalo de tempo?

- **A.** 8mol/s:
- **B.** 6mol/s;
- **C.** 4mol/s;
- **D.** 3mol/s.

O pH de uma solução é 6. Se reduzirmos o valor do pH da mesma solução para 2, a concentração de iões hidrogénio será:

A. 10.000 vezes maior do que a inicial;

C.1.000 vezes menor do que a inicial;

- **B.** 1.000 vezes maior do que a inicial;
- **D.** 4 vezes menor do que a inicial.

Considerando os valores da constante de ionização da água em função da temperatura:

Temperatura (K)	Kw		
298	1 x 10 ⁻¹⁴		
323	5,3 x 10 ⁻¹⁴		

Podemos afirmar que na água pura:

- **A.** $[H^+] < 1 \times 10^{-7}$
- a 323 K:
- **B.** $[OH^{-}] > 1 \times 10^{-7}$
- a 298 K;
- **C.** $[H^+] < 1 \times 10^{-7}$
- a 298 K;
- **D.** $[H^+] = [OH^-]$ a qualquer temperatura.
- 22- Para conseguirmos aumentar o pH de uma solução aquosa, devemos borbulhar nela o gás:
 - A. Ácido Clorídrico;
- B. Amónia;
- C. Ácido Cianídrico;
- **D.** Hidrogénio.
- 23-Tem-se uma solução com pH = 7,0 e pretende-se acidificá-la de modo que o pH fique em torno de 6,0. Pode-se conseguir isso borbulhando na solução:
 - **A.** NH₃;
- **B.** H₂;
- $\mathbf{C.}$ CH₄;
- **D.** CO_2 .
- 24- O pH de uma solução que contém 8,5 x 10⁻³g por litro de OH é:
 - **A.** 10,7;

- **B.** 10;
- **C.** 9,3;
- **D.** 4,7.
- 25-Nas pizzarias há cartazes dizendo "Forno à lenha". A reacção que ocorre neste forno para assar a piza é
 - **A.** explosiva;
- **B.** exotérmica:
- C. endotérmica;
- **D.** catalisada.
- 26-Com a actual crise energética mundial, cresceu o interesse na utilização do H_2 como combustível, devido à grande quantidade de energia libertada por grama na sua combustão. Contudo, os balanços energético e económico envolvidos na utilização imediata desse combustível ainda são desfavoráveis. Analise a reacção abaixo.
 - **A.** A combustão de um mol de $H_2(g)$ consome $\frac{1}{2}$ mol de $O_2(g)$, formando um mol de $H_2O(g)$, e libertando 239 kJ de calor;
 - **B.** A reacção inversa, de decomposição de um mol de água, fornece quatro moles de átomos de hidrogénio;
 - C. A reacção representativa do processo acima descrito envolve transferência de iões hidrogénio (H_3O^+) ;

- **D.** Por serem espécies isoeletrónicas, hidrogénio e oxigénio reagem prontamente para formar água.
- 27- A temperatura normal de ebulição do 1-propanol, CH₃CH₂CH₂OH, é 97,2 °C, enquanto o composto metoxietano, CH₃CH₂OCH₃, de mesma composição química, entra em ebulição normal em 7,4 °C. Qual das alternativas é compatível com esta observação experimental.
 - **A.** O mais elevado ponto de ebulição do 1-propanol deve-se principalmente às ligações de hidrogénio;
 - **B.** O 1-propanol e o metoxietano ocorrem no estado líquido, à temperatura ambiente;
 - **C.** Geralmente, os álcoois são mais voláteis do que os éteres, por dissociarem mais facilmente o iões H⁺;
 - **D.** Em valores de temperatura abaixo de 7,4 °C, a pressão de vapor do metoxietano é maior do que a pressão atmosférica.
- 28- Relativamente às equações abaixo, fazem-se as seguintes afirmações:

C grafite (s) + $O_2(g) \rightarrow CO_2(g)$

 $\Delta H = -94,0 \text{ kcal}$

C diamante (s) + $O_2(g) \rightarrow CO_2(g)$

 $\Delta H = -94.5 \text{ kcal}$

- I. C (grafite) é a forma alotrópica menos energética.
- II. As duas reacções são endotérmicas.
- III.Se ocorrer a transformação de C (diamante) em C (grafite) haverá liberação de energia.
- IV. C (diamante) é a forma alotrópica mais estável.

São correctas:

A. I e II, somente;

C. I, II e III, somente;

B. I e III, somente;

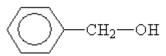
D. I, III e IV, somente.

Química Orgânica

- 29- Das afirmações abaixo, a única correcta é:
 - **A.** Os compostos orgânicos nem sempre contêm átomos de carbono;
 - **B.** O átomo de carbono só pode hibridizar na forma *sp*;
 - C. O carbono é um elemento de transição:
 - **D.** O átomo de carbono pode ligar-se tanto a metal como a não-metal.
- 30-Pertence à classe das aminas primárias o composto que se obtém pela substituição de:
 - A. Um dos átomos de hidrogénio do NH₃ por um radical alquila;
 - **B.** Um dos átomos de hidrogénio do NH₃ por um radical acila;
 - C. Um dos átomos de hidrogénio do NH₃ por dois radicais arila;
 - **D.** Três átomos de Hidrogénio do NH₃ por um radical alquilidina.
- 31-Um composto que apresenta um radical alquila e o grupo amino ligados ao átomo de carbono da carbonila, pertence à função:
 - A. Cetona;
- **B.** Amida;
- C. Aminoácido;
- **D.** Amina.

32-Dentre os compostos seguintes indique qual deles pertence a série dos Ésteres:

A. CH₃CH₂-O-CH₃;


C. CH₃CH₂COCH₂CH₃;

B. CH₃CO₂CH₂CH₃;

D. CH₃CH₂CO₂H.

33-O composto ao lado pertence a função química:

- A. Álcool;
- **B.** Fenol;
- C. Aldeído;
- **D.** Éter.

34- O representante das cetonas é acetona também designado por:

- **A.** Metanona:
- **B.** Etanona;
- **C.** Propanona;
- **D.** Butanona.

35- O composto de fórmula CH₂=CH-CH₂OH pode ser chamado:

A. Álcool propilico;

C. Álcool alílico:

B. Álcool isopropilíco;

D. Álcool vinílico.

36- Indique o tipo de isomeria nos compostos seguintes:

$$CH_3$$
 CH_3 CH_3

$$CH_3 - CH_2$$
 CH_3
 $C = C$
 $CH_3 - CH_2$ CI

- A. Posição;
- **B.** Cadeia;
- **C.** Geométrica; **D.** Nenhuma das alternativas.

37- Os isómeros de função representada pela fórmula molecular C₇H₈O são:

A. Álcool e éter:

C. Álcool aromático e fenol;

B. Aldeído e cetona:

D. Ácido carboxílico e éter.

38-Os compostos 1, 2 e 3:

$$2^{CH_2=CH} - C_{-CH_3}^{H}$$

Apresentam respectivamente o seguinte número de carbono quaternário:

A. Um; Dois; Dois;

C. Um; Zero; Zero;

B. Um; Zero; Dois;

D. Um; Dois, Zero.

39- Um átomo de carbono terciário é:

- **A.** Um átomo de carbono com duas ligações sigma e uma ligação pi;
- **B.** Um átomo de carbono com três ligações sigmas;
- C. Um átomo de carbono ligado a três outros átomos de carbono;
- **D.** O terceiro átomo de carbono de uma cadeia orgânica..

- 42-Um composto cujas moléculas se ligam inter-molecularmente por meio de pontes de hidrogénio pode girar o plano da luz polarizada e que contém três átomos de carbono sp^2 pode ser representado pela estrutura:

A. CH_3 –CH=CH–CN;

A. apenas III;

C. CH₃–CH₂–COOCH₃;

B. CH₂=CH- CHCl-COOH;

D. CH_3 –CO– CH_2CO – NH_2 .

D. I, III e IV.

43- Um aldeído se distingue de uma cetona pelo:

A. poder corrosivo do aldeído;

C. carácter redutor da cetona;

B. poder corrosivo da cetona;

- D. carácter redutor do aldeído.
- 44-O ácido fórmico é responsável pela irritação causada na pele humana, provocada pela picada das formigas. Qual das substancias abaixo poderia ser aplicada na pele, afim de atenuar esse efeito irritante.

A. $Mg(OH)_2$;

B. C_2H_5OH ;

B. I e II;

 $\mathbf{C.} \, \mathrm{NH_4Cl};$

C. II e III;

D. H₃PO₄.

FIM